LightBlog

lundi 31 août 2015

Material Design Spec Updated

social

The Material Design Spec has been updated to add info and guidelines on various aspects such as permissions, bottom sheets, peeking notifications, and fingerprint authentication. More examples have also been added for cards, launch screens as well as settings UI. Go on over and have a look!



from xda-developers » xda-developers | Material Design Spec Updated http://ift.tt/1Q3VYPZ
via IFTTT

How to Fatsboot Flash Moto G (3rd Gen) Factory Firmware Images

motorola-moto-g-3rd-gen-1

This guide written by Senior Member lost101, will show you how to Fastboot Flash your Moto G. It has been written due to a hard-brick that occurred when using a Moto G (1st Gen) in a previous guide. Proceed with caution!



from xda-developers » xda-developers | Material Design Spec Updated http://ift.tt/1EvZhya
via IFTTT

Xiaomi Mi4C Retail Box Reveals Snapdragon 808 & USB Type C

xiaomi-mi4c-specs

A leaked retail box of what will be a Chinese (domestic) variant of the popular Mi 4i has leaked, revealing the next upgrade of the phone will come with a USB type C port instead of the traditional micro usb port. Leaked AnTuTu benchmarks also reveal that the phone will come with a Snapdragon 808.



from xda-developers » xda-developers | Material Design Spec Updated http://ift.tt/1Kze24c
via IFTTT

T-Mobile CEO Promises “Action Against Tethering Thieves”

LegereFeaturePhoto2_thumb

In an open letter to his customers, T-Mobile CEO John Legere has said that the company will now go after “thieves” who abuse unlimited 4G plans by using tethering features on phones. The “thieves” tend to download apps to hide tether usage, root phones and write code to mask their activity, all to use more 4G data than T-Mobile allows them to. Let’s hope this doesn’t mean bad news for T-mobile phones…



from xda-developers » xda-developers | Material Design Spec Updated http://ift.tt/1KzdD1z
via IFTTT

@upleaks Leaks Moto 360 Sport & Motorola Bounce

CNuiELFUwAA7XTd

Prominent leaker @upleaks lived up to his name once again by showing off the 2nd Gen Moto 360 as well as the Moto 360 Sport (which is reportedly coming in November). In another tweet, the Motorola Bounce was leaked, reportedly featuring a shatter-proof body, a 5.43″ QHD display, the Snapdragon 810 with 3GB RAM, and a 3760 mAh battery.



from xda-developers » xda-developers | Material Design Spec Updated http://ift.tt/1Kzd1co
via IFTTT

Android Wear Adds Support For iPhones

AndroidWearforiOS

Bringing along good news to iPhone owners, Google has announced that Android Wear will now support iPhones.

The supported list of Apple devices is limited to the iPhone 5 and newer, all of which should be running iOS 8.2 or a higher version as well. The Wear App will soon go live on the App Store today, allowing iPhone users to simply pair the compatible watches with their phone to reroute notifications.

AndroidWearforiOS

There is a slight catch though. Android Wear for iOS currently works with the LG Watch Urbane, while future Android Wear watches (including ones from Huawei, Asus and Motorola) will come with built-in support for iOS. There may be more obstacles to this, but the official blog remains mum on them. Also, keep in mind Android Wear will not have the same level of functionality it does with Android phones due to system restrictions.

Nonetheless, this is great news for all iPhone users as they now have a wider variety of watches to choose from. Sales of the supported Android Watches will also receive boosts as the untapped iOS market is now accessible to them. All in all, iOS support is indeed a beneficial move for all parties and watches involved… except the Apple Watch.

How do you think this will affect the smartwatch market? Sound off below!



from xda-developers » xda-developers | Material Design Spec Updated http://ift.tt/1JH81xg
via IFTTT

The Age of Compromises: A Data-Driven Look at the End of Annual Flagships

flgships

Smartphone OEMs may soon face real obstacles to making systematic improvements in their lineup year after year.

Most of us here are Android power users and enthusiasts. We take for granted that smartphones will get better and better every year—we demand ever more from smartphone OEMs, and we get upset when we don’t see enough improvement on the latest flagship year-over-year. But the past year in the industry has been disappointing for many. Though there are a couple of exceptions, most 2015 flagships have failed to ignite the passion and excitement as those of yesteryear.

The primary problem, this year, is that there have been compromisescompromises everywhere. Many OEMs are choosing the Snapdragon 808, which is scantly better (if at all, especially on 1440p) than last year’s 801, because the 810 has overheating issues; internal storage capacity remains uncomfortably low on virtually all phones, micro SD slots keep disappearing, and additional capacity is so expensive you might think it’s still the year 1992; thinness is still widely-prioritized over battery capacity, while few OEMs choose to have a removable battery; and every OEM insists on adding “value” to Google’s expertly-designed operating system by dumping bloat and ugly skins on top, while the one OEM that delivered a near-stock experience is currently being gutted by Lenovo.

There seems to be no perfect phone, this year. In fact, I can’t think of any almost perfect phones, either. For those of us still using 2014 phones—or hell, even 2013 flagships—the minor boost in specs doesn’t seem to justify the major expense of upgrading to a shiny new smartphone.

With this backdrop, I’d like to take an opportunity to discuss the C-word—compromise—and why we may be seeing more of it in the future.

We’ve previously flirted with the idea of a coming “age of compromises,” but the fact is that smartphones can’t keep improving at the pace that we’ve been seeing—and expect—indefinitely. Academics and engineers have been openly discussing the end of Moore’s Law in less than a decade, but smartphone OEMs are additionally limited by myriad practical considerations. From physical size and battery life to price and performance, smartphone OEMs may soon face real obstacles to making systematic improvements in their lineup year after year. At a bare minimum, annualized smartphone releases may be a thing of the past. Even Apple—once well-known for its annual product cycle on various products—has slowed down. In the worst case, though, hardware stagnation potentially looms before us.

To better see the long-term trends of the industry, I’ve organized data on all of the major OEM flagships—Samsung, LG, HTC, Sony, Motorola, and Nexus-branded devices—and prepared figures. Let’s take a look.

Benchmarks

Flagships - Benchmarks

AndEBench benchmarks over time

We start off with benchmarks1. If we take a look at the above figure, benchmarks are in a solid upward trajectory from 2011 through 2014… but then something happens that crashes scores across the board—that something is the Snapdragon 810. Probably due to the widely-publicized overheating issues and the throttling put in place, the Snapdragon 810 performs poorly in benchmarks (where CPUs are taxed to their limits… and heat up). Both Sony and HTC used the SD810 in their latest flagships, and they lie at the bottom of the pack in these CPU benchmarks. LG and Motorola both fare better with the SD808, but neither perform as well as their SD801 predecessors from 2014. Samsung is the outlier, here, as they used their internally-developed Exynos SoC. Though often panned in the enthusiast community for being the odd man out, it looks like Samsung may have made a good choice to stay away from the latest family of Snapdragon processors.

Even if mobile CPU performance continues to improve in benchmarks, it’s an entirely different matter whether or not that’ll translate into noticeable real-world performance.

Unlike many of the other technical specs of smartphones, the CPU is one area that can, presumably, continue improving for quite some time. Maybe Moore’s Law will come to an end within a decade, but in the smartphone industry, a decade is an eternity. Unlike non-mobile platforms, smartphone OEMs have energy consumption and performance per watt to consider, and mobile CPUs are far behind those of desktops and servers in terms of performance. It’s because of this, though, that there remain numerous avenues for improvement on mobile CPUs for years to come. It’s likely that even long after Moore’s Law comes to an end and CPU performance plateaus, mobile devices will continue to see performance gains through improvements in both hardware and software efficiency.

A bigger question, though, is whether further improvements in mobile performance are necessary or useful. Even on the desktop, CPU performance is rarely a bottleneck; operating systems are light on system resources, and few games, even, push CPUs to their limits. Even if mobile CPU performance continues to improve in benchmarks, it’s an entirely different matter whether or not that’ll translate into noticeable real-world performance gains—well, unless people start playing Crysis on their phones.

1 Note that for the purposes of these comparisons, it was important to find a benchmarking methodology that consistent from 2011 until present. All of the most popular benchmarking software, such as AnTuTu and 3DMark, have undergone major revisions in that time, resulting in substantially different scores depending on the version used. AndEBench, while not popular, was developed by an industry consortium to provide a consistent performance benchmark over long periods of time. Scores were retrieved via the AndEBench site and Notebookcheck.com.

RAM

Flagships - RAM

RAM over time

RAM is trending upwards, but slowly. Unlike CPUs, the primary reason we don’t see larger numbers, here, is economic. There’s nothing stopping Samsung from throwing more RAM in the Galaxy S6, but it was only a year and a half ago that they chose to regress back to 2 GB even after the Note 3 was released with 3 GB RAM. Most laptops, today, generally sport 4 GB of RAM, and even the Microsoft Surface 3, which runs full Windows 10, starts with 2 GB. The fact is that RAM growth on desktops and laptops has been stagnant for years, and people do less on their mobile devices than they do on dedicated PCs. Nevertheless, most flagships are now announced or rumored to have 4 GB, so the steady upwards creep in RAM continues.

DDR4 is the next step (Snapdragon 810 supports it, but the 808 does not; newer models almost certainly will). While DDR4 certainly has advantages over DDR3 (lower voltage, for example), don’t expect much in the way of performance improvements. RAM is virtually never a performance bottleneck, and comparisons between performance with both DDR3 and DDR4 RAM are really nothing to write home about. Will DDR4 improve benchmarks? Probably. Will it improve real world performance? Doubtful.

Screen Size

Flagships - Screen Size

Screen size over time

Screen size seems to just keep going up and up. It can’t go up forever, though; there is a limit, and I would suggest that we’ve hit it. Though I can’t seem to find any market research on what screen size the public prefers, there are some design decisions by major OEMs that should give a decent barometer of public opinion. For instance, when Motorola was bought by Google and challenged itself to design the ideal Android smartphone for the masses, it chose a 4.7″ screen. When Samsung internalized the complaints about the widely-panned Galaxy S5 and reinvented the series with the Galaxy S6, it chose a 5.1″ screen. And Apple—which, of all companies, you would assume knows something about consumer preferences and marketing—only recently introduced a phone larger than 4.7″–and still, the smaller iPhone 6 continues to greatly outsell the iPhone 6 plus.

Screen DPI/PPI

Flagships - Screen DPI / PPI

Screen DPI / PPI over time

Screen PPI is on an upward trend. But once, again, you can only go so far, and we’re pretty close to the end—or at least an extended plateau. “Retina Display” is generally in the range of ~320 PPI, and the highest-density screens currently on Android belong to the Galaxy S6 at 577 PPI. How much higher will PPI go? Just last year, Sharp unveiled a concept screen with 736 PPI, which would meet or exceed the limits of the human eye. If we keep going up, taken to its logical conclusion, an 8K resolution on a 12″ tablet would be about 747 PPI, while a 4K resolution on a 6″ phablet is approximately 734 PPI. However, 2K screens are still not yet ubiquitous on flagships, 4K only exists in the realm of ultra-premium TVs and monitors, and 8K doesn’t even exist, yet, outside of research labs and expos. Little to no content exists at these resolutions to justify both the additional expense and the burden on the CPU and GPU, neither or which are trivial.

Display Resolution

Flagships - Display Resolution

Display resolution over time

Like screen size and screen pixel density, screen resolution is on an upward trend. Resolution can’t increase independently, though. Screen resolution is both a function of screen size and PPI, and it’s impossible to talk about one without talking about the other two.

We’ll be done with pixel density, and thus we’ll be done with increasing display resolutions… unless VR picks up.

Just a few years ago 720p was considered reasonable, and at the screen sizes of the time, a 720p screen was at “Retina Display”-levels of pixel density (~320+ ppi). Since then, screen sizes have gone up, not only due in part to consumer demand, but also due to the ability of manufacturers to manufacture denser and denser screens. Display resolution will rise as pixel density improves and screen sizes get larger. After all, if you can manufacture a screen at some amount of pixels per inch, it’s trivial to just manufacture more inches of it. Screen sizes are typically standardized, though, so increases in screen size will follow predictable jumps: HD (1280×720), Full HD (1920×1080), Quad HD/2K (2560×1440), and Ultra HD/4K (3840×2160). Screen pixel density is not standardized, though, so expect these resolutions to appear with various screen sizes and screen PPI’s.

However, if screen sizes stop increasing (which I think they have) and pixel density stops rising (we’re very near the limits of the human eye), display resolution will cease to increase. If the industry continues at its current rate, we can expect to see UHD/4K screens on flagship phones soon. At that point, pixel density will exceed that which the eye can see, and there will be no more reason to improve. We’ll be done with pixel density, and thus we’ll be done with increasing display resolutions… unless VR picks up.

Battery Capacity

Flagships - Battery Capacity

Battery capacity over time

Here’s a chart that, at first glance, seems to be encouraging. Battery capacity is in an upward trajectory. I’m sure everyone who has ever owned a smartphone has, at some point in time, wished they had a bigger battery. Although sometimes it seems that OEMs choose fashion over battery (and it’s obvious from the figure which OEMs are habitually behind the curve), it’s pretty clear that capacity is consistently improving every year. Battery life isn’t strictly proportional to battery capacity, though. On top of that increased physical capacity, every new iteration of Android brings with it improved efficiency and new battery-saving features; individual OEMs, too, work to optimize their phones for battery savings as best they can.

There is a recurring theme in this article, though. Yes, it’s nice that battery capacity for flagships is now upwards of 3,000 mAh, on average, but how much farther can we continue to go? At some point we’ll hit the ceiling, where added capacity doesn’t justify the extra weight and size. Additionally, battery capacity is almost certainly related to screen size—as screen sizes go up, so, too, do the physical dimensions of the phone; a larger screen means more physical space to put more battery. With screen sizes hitting their sweet spot and without radical changes in battery technology, OEMs have only one way to add more capacity—add thickness. So are they doing it? Well, we have a couple figures for that.

Volume

Flagships - Volume

Maximum Volume of flagship phones over time (cubic cm)

Firstly, let’s take a look at the volume—the physical space inside of a smartphone, inside of which OEMs must fit all the components—of flagships over time. The physical space inside of a phone is certainly increasing over time, but how much of that is due to larger screens and how much is due to added thickness?

I previously mentioned that battery capacities may be piggy-backing off of the ever-increasing screen sizes on mobile devices. But with screen sizes stabilizing at between 5″ and 6″, OEMs are going to have to start adding thickness to smartphones if they wish to continue to increase battery capacity. Is there any evidence of that happening? Take a look at the next figure.

Thickness

Flagships - Thickness

Thickness of flagships over time

The most notable thing, here, is the absence of any sort of industry-wide patterns. Some flagships are getting thicker over time, while others are getting thinner. Further, there’s not really any correlation between thickness and battery capacity. Companies like Sony routinely pack large batteries in their phones, but they are at the bottom of the thickness charts; conversely, Motorola ranks number one for thickness, but their batteries are small.

So if thicknesses aren’t really increasing—and even when they do, they don’t correlate with added battery capacity—the conclusions are clear: the added physical volume within smartphones that has aided manufacturers in adding ever-larger batteries is primarily driven by the growth in screen sizes. With screen sizes pretty much fixed for the foreseeable future, short of thicker phones (unlikely) or a breakthrough in energy storage density (even more unlikely), we’d better start getting comfortable with the ~3,000 mAh range.

Mass

Flagships - Mass

Mass of Android flagships over time

I think this is an interesting figure. How many of you think about mass when phone shopping? The fact is, phones have been getting heavier over time—to the tune of nearly 30% over 4 years! When you think about it, though, it makes sense. Screen sizes have been going up, and so the physical dimensions of phones have been going up, too—that means more material and more weight. Battery capacity is also increasing, which adds a lot more weight. In addition, phones, in general, have been becoming more premium over time—in 2011, aluminum accents were an anomaly; today, they’re typical. All of these things add weight. But since screen sizes probably won’t increase much more, and OEMs haven’t been keen to add more to the thickness of phones, the steady increase in phone mass over time is probably going to be a thing of the past.

Minimum Storage

Flagships - Minimum Storage

Minimum storage over time

Minimum storage is something that should have gone up a long, long time ago. The price per GB of NAND storage has been dropping precipitously for years, but smartphone manufacturers loathe to pass those savings on to consumers. Introductory storage space has remained at 16GB for most phones for five years. We’re still getting ripped off with $50 to $100 price tags for upgrading to larger storage capacities, and microSD slots are something of an endangered species. This is the only spec in the whole industry that has refused to budge; we’re finally starting to see an inkling of a new 32 GB minimum standard, though, and it’s about damn time.

Rear Camera Resolution

Flagships - Rear Camera Resolution

Resolution of rear camera over time

Megapixels have been trending upwards, but the scatter is higher than in most other charts. There’s a good reason for that: design—both hardware and software—are more important in determining the quality of a digital photo than the absolute resolution. For instance, the Samsung Galaxy S6 and Note 4 both share identical hardware cameras, but the S6 takes better pictures; and newer Xperia phones take better photos if you abstain from unlocking them. Some OEMs have held megapixel counts stable, while others have even decreased the megapixel count from one generation to the next (i.e., HTC). Despite this, image quality has generally improved over time. How many of you remember the terrible image quality of the Galaxy Nexus camera, for instance?

Looking at the trends broadly, we’ve just about hit the ~20 MP mark; even high quality point and shoot digital cameras don’t really go much higher than that. Anything much higher will probably result in an increase of noise, rather than an increase of image quality. The take-home message here is that race for more megapixels is done. The end of resolution improvements doesn’t signify the end of innovation or image quality, though. As mentioned, lens and software design are much more important than resolution, and we aren’t even in uncharted waters, here—the race for more megapixels came to an end in the world of point & shoot digital cameras years ago, and the result was that manufacturers started competing on features, software, image quality, and smart automatic camera modes. We’ve already seen some smartphone manufacturers resort to gimmicks to differentiate their products (dual rear cameras, anyone?), but there are many ways to innovate and differentiate. One such new feature that comes to mind is optical image stabilization, which has been making its way into most flagship phones.

Conclusions

I hope the figures I have presented have been enlightening, and I’m sure that everyone reading will draw their own conclusions. In the absence of any external information, the clear, upward-trending linear growth across nearly every smartphone specification might leave some people with the idea that this growth will continue forever—or at least unabated in the near-term. I’ve come to very different conclusions, however. I think that this clear, predictable growth can’t continue forever, and indeed it will come to an end sooner than we might expect. Us Android enthusiasts have been spoiled by these years of high spec growth rates, and we’ve even grown to expect such improvements year after year. Some specs, such as phone size and rear camera megapixel count, have reached the end of their growth, while in other areas continuous improvement will become exponentially more difficult over time as OEMs reach the limits of current technical capability.

Although I think it’s likely that we’ll continue to see new, exciting, and innovative phones for a long time to come, I do think that the idea of concrete improvements year after year after year is going to face an abrupt death. In my opinion, the annualized smartphone model is over, or will soon be over. Like with Apple, I think that we’ll soon start seeing major flagships receive only minor upgrades or additions annually, while complete redesigns will take two years or more.

Below are my predictions for the future. Do you agree with them? Let us know in the comments!

  • CPUs will improve, but does it matter? Mobile CPUs are limited by heat, efficiency, and price considerations. As Moore’s Law slows down, phones will no longer see the performance, heat, and efficiency gains merely from using smaller processes. In addition, we may already be at a point where the CPU is strong enough that more speed won’t necessarily mean a snappier operating system. If that’s the case, further performance gains won’t result in noticeable real-world improvements, and so new CPUs won’t excite like they once did.
  • RAM will increase, but slowly. Smartphones are rapidly approaching parity with laptops in terms of RAM capacity. RAM is expensive, and the OEMs very slow rate of RAM capacity improvements shows that they’ll continue shipping phones with as little RAM as possible, and they won’t include more if the performance boost doesn’t justify it.
  • Screen size has stabilized between 5″ and 6″. Any larger and smartphones will have become tablets. Sales of current phone models also show that consumers prefer moderately-sized phones to behemoths like the Nexus 6. There will always be a market for phablets, but the median size of smartphones should grow no more.
  • Pixel density is nearing its logical conclusion. The pixel density on flagships is already upwards of 500 ppi, and the Galaxy S6 is approaching 600. Sharp has already developed a prototype screen with 736 ppi, which exceeds the limits of what the human eye can see. Once you reach that point, there’s not much reason to go further.
  • Display resolution will stay at QHD for years. With screen size and pixel density stagnating, resolution will stagnate, too. Even with Sharp’s super-dense prototype screens, you can only fit 3840×2160 pixels (UHD/4K) on a 6″ screen. Smartphones have been a driving force for improved resolution and pixel density in computer displays, but 4K may be the end-game—at least for anything smaller than a large tablet. And at our current pace of resolution growth, it’ll be years before mainstream phones adopt 4K; I expect we’ll mostly be working with QHD screens for the foreseeable future.. even if the jump is close.
  • Battery capacity may have reached its limit. We’re finally up around the 3,000 mAh mark for median battery capacity in flagship phones, but there it will probably stay. Ever-growing screen sizes have given OEMs more physical space to shove bigger batteries into phones, but as screen sizes stagnate, so too do phone sizes, and OEMs have shown little interest in adding extra thickness to phones. Thus, unless we see improvements within the batteries, themselves—improved energy storage density, for instance—we’d probably better get used to 3,000 mAh batteries.
  • Battery life will continue to improve. Despite battery capacities stagnating, there is plenty of room for battery life improvement. Every new version of Android sips less battery than the last, and from screens to radios, OEMs improve efficiency where they can, too. With CPU fabrication getting smaller and DDR4 running at a lower voltages, we can expect battery life to improve even as capacity growth is at a standstill.
  • The megapixel race is done, but that doesn’t mean cameras will stop improving. Rear camera resolutions and sensor sizes equal or exceed dedicated point & shoot cameras; additional megapixels will just add noise. The digital camera industry reached the megapixel finish line years ago, and they have since focused on improving software and features to differentiate from competitors. Software makes a huge difference in image quality, as can be seen by the difference in quality between the Samsung Galaxy S6 and Note 4, despite identical camera hardware. Optical image stabilization is the Next Big Thing, and we’ll likely see more gimmicks as manufacturers strive to differentiate themselves from competitors.



from xda-developers » xda-developers | Material Design Spec Updated http://ift.tt/1LFHWT1
via IFTTT

The Age of Compromises: A Data-Driven Look at the End of Annual Flagships

flgships

Smartphone OEMs may soon face real obstacles to making systematic improvements in their lineup year after year.

Most of us here are Android power users and enthusiasts. We take for granted that smartphones will get better and better every year—we demand ever more from smartphone OEMs, and we get upset when we don’t see enough improvement on the latest flagship year-over-year. But the past year in the industry has been disappointing for many. Though there are a couple of exceptions, most 2015 flagships have failed to ignite the passion and excitement as those of yesteryear.

The primary problem, this year, is that there have been compromisescompromises everywhere. Many OEMs are choosing the Snapdragon 808, which is scantly better (if at all, especially on 1440p) than last year’s 801, because the 810 has overheating issues; internal storage capacity remains uncomfortably low on virtually all phones, micro SD slots keep disappearing, and additional capacity is so expensive you might think it’s still the year 1992; thinness is still widely-prioritized over battery capacity, while few OEMs choose to have a removable battery; and every OEM insists on adding “value” to Google’s expertly-designed operating system by dumping bloat and ugly skins on top, while the one OEM that delivered a near-stock experience is currently being gutted by Lenovo.

There seems to be no perfect phone, this year. In fact, I can’t think of any almost perfect phones, either. For those of us still using 2014 phones—or hell, even 2013 flagships—the minor boost in specs doesn’t seem to justify the major expense of upgrading to a shiny new smartphone.

With this backdrop, I’d like to take an opportunity to discuss the C-word—compromise—and why we may be seeing more of it in the future.

We’ve previously flirted with the idea of a coming “age of compromises,” but the fact is that smartphones can’t keep improving at the pace that we’ve been seeing—and expect—indefinitely. Academics and engineers have been openly discussing the end of Moore’s Law in less than a decade, but smartphone OEMs are additionally limited by myriad practical considerations. From physical size and battery life to price and performance, smartphone OEMs may soon face real obstacles to making systematic improvements in their lineup year after year. At a bare minimum, annualized smartphone releases may be a thing of the past. Even Apple—once well-known for its annual product cycle on various products—has slowed down. In the worst case, though, hardware stagnation potentially looms before us.

To better see the long-term trends of the industry, I’ve organized data on all of the major OEM flagships—Samsung, LG, HTC, Sony, Motorola, and Nexus-branded devices—and prepared figures. Let’s take a look.

Benchmarks

Flagships - Benchmarks

AndEBench benchmarks over time

We start off with benchmarks1. If we take a look at the above figure, benchmarks are in a solid upward trajectory from 2011 through 2014… but then something happens that crashes scores across the board—that something is the Snapdragon 810. Probably due to the widely-publicized overheating issues and the throttling put in place, the Snapdragon 810 performs poorly in benchmarks (where CPUs are taxed to their limits… and heat up). Both Sony and HTC used the SD810 in their latest flagships, and they lie at the bottom of the pack in these CPU benchmarks. LG and Motorola both fare better with the SD808, but neither perform as well as their SD801 predecessors from 2014. Samsung is the outlier, here, as they used their internally-developed Exynos SoC. Though often panned in the enthusiast community for being the odd man out, it looks like Samsung may have made a good choice to stay away from the latest family of Snapdragon processors.

Even if mobile CPU performance continues to improve in benchmarks, it’s an entirely different matter whether or not that’ll translate into noticeable real-world performance.

Unlike many of the other technical specs of smartphones, the CPU is one area that can, presumably, continue improving for quite some time. Maybe Moore’s Law will come to an end within a decade, but in the smartphone industry, a decade is an eternity. Unlike non-mobile platforms, smartphone OEMs have energy consumption and performance per watt to consider, and mobile CPUs are far behind those of desktops and servers in terms of performance. It’s because of this, though, that there remain numerous avenues for improvement on mobile CPUs for years to come. It’s likely that even long after Moore’s Law comes to an end and CPU performance plateaus, mobile devices will continue to see performance gains through improvements in both hardware and software efficiency.

A bigger question, though, is whether further improvements in mobile performance are necessary or useful. Even on the desktop, CPU performance is rarely a bottleneck; operating systems are light on system resources, and few games, even, push CPUs to their limits. Even if mobile CPU performance continues to improve in benchmarks, it’s an entirely different matter whether or not that’ll translate into noticeable real-world performance gains—well, unless people start playing Crysis on their phones.

1 Note that for the purposes of these comparisons, it was important to find a benchmarking methodology that consistent from 2011 until present. All of the most popular benchmarking software, such as AnTuTu and 3DMark, have undergone major revisions in that time, resulting in substantially different scores depending on the version used. AndEBench, while not popular, was developed by an industry consortium to provide a consistent performance benchmark over long periods of time. Scores were retrieved via the AndEBench site and Notebookcheck.com.

RAM

Flagships - RAM

RAM over time

RAM is trending upwards, but slowly. Unlike CPUs, the primary reason we don’t see larger numbers, here, is economic. There’s nothing stopping Samsung from throwing more RAM in the Galaxy S6, but it was only a year and a half ago that they chose to regress back to 2 GB even after the Note 3 was released with 3 GB RAM. Most laptops, today, generally sport 4 GB of RAM, and even the Microsoft Surface 3, which runs full Windows 10, starts with 2 GB. The fact is that RAM growth on desktops and laptops has been stagnant for years, and people do less on their mobile devices than they do on dedicated PCs. Nevertheless, most flagships are now announced or rumored to have 4 GB, so the steady upwards creep in RAM continues.

DDR4 is the next step (Snapdragon 810 supports it, but the 808 does not; newer models almost certainly will). While DDR4 certainly has advantages over DDR3 (lower voltage, for example), don’t expect much in the way of performance improvements. RAM is virtually never a performance bottleneck, and comparisons between performance with both DDR3 and DDR4 RAM are really nothing to write home about. Will DDR4 improve benchmarks? Probably. Will it improve real world performance? Doubtful.

Screen Size

Flagships - Screen Size

Screen size over time

Screen size seems to just keep going up and up. It can’t go up forever, though; there is a limit, and I would suggest that we’ve hit it. Though I can’t seem to find any market research on what screen size the public prefers, there are some design decisions by major OEMs that should give a decent barometer of public opinion. For instance, when Motorola was bought by Google and challenged itself to design the ideal Android smartphone for the masses, it chose a 4.7″ screen. When Samsung internalized the complaints about the widely-panned Galaxy S5 and reinvented the series with the Galaxy S6, it chose a 5.1″ screen. And Apple—which, of all companies, you would assume knows something about consumer preferences and marketing—only recently introduced a phone larger than 4.7″–and still, the smaller iPhone 6 continues to greatly outsell the iPhone 6 plus.

Screen DPI/PPI

Flagships - Screen DPI / PPI

Screen DPI / PPI over time

Screen PPI is on an upward trend. But once, again, you can only go so far, and we’re pretty close to the end—or at least an extended plateau. “Retina Display” is generally in the range of ~320 PPI, and the highest-density screens currently on Android belong to the Galaxy S6 at 577 PPI. How much higher will PPI go? Just last year, Sharp unveiled a concept screen with 736 PPI, which would meet or exceed the limits of the human eye. If we keep going up, taken to its logical conclusion, an 8K resolution on a 12″ tablet would be about 747 PPI, while a 4K resolution on a 6″ phablet is approximately 734 PPI. However, 2K screens are still not yet ubiquitous on flagships, 4K only exists in the realm of ultra-premium TVs and monitors, and 8K doesn’t even exist, yet, outside of research labs and expos. Little to no content exists at these resolutions to justify both the additional expense and the burden on the CPU and GPU, neither or which are trivial.

Display Resolution

Flagships - Display Resolution

Display resolution over time

Like screen size and screen pixel density, screen resolution is on an upward trend. Resolution can’t increase independently, though. Screen resolution is both a function of screen size and PPI, and it’s impossible to talk about one without talking about the other two.

We’ll be done with pixel density, and thus we’ll be done with increasing display resolutions… unless VR picks up.

Just a few years ago 720p was considered reasonable, and at the screen sizes of the time, a 720p screen was at “Retina Display”-levels of pixel density (~320+ ppi). Since then, screen sizes have gone up, not only due in part to consumer demand, but also due to the ability of manufacturers to manufacture denser and denser screens. Display resolution will rise as pixel density improves and screen sizes get larger. After all, if you can manufacture a screen at some amount of pixels per inch, it’s trivial to just manufacture more inches of it. Screen sizes are typically standardized, though, so increases in screen size will follow predictable jumps: HD (1280×720), Full HD (1920×1080), Quad HD/2K (2560×1440), and Ultra HD/4K (3840×2160). Screen pixel density is not standardized, though, so expect these resolutions to appear with various screen sizes and screen PPI’s.

However, if screen sizes stop increasing (which I think they have) and pixel density stops rising (we’re very near the limits of the human eye), display resolution will cease to increase. If the industry continues at its current rate, we can expect to see UHD/4K screens on flagship phones soon. At that point, pixel density will exceed that which the eye can see, and there will be no more reason to improve. We’ll be done with pixel density, and thus we’ll be done with increasing display resolutions… unless VR picks up.

Battery Capacity

Flagships - Battery Capacity

Battery capacity over time

Here’s a chart that, at first glance, seems to be encouraging. Battery capacity is in an upward trajectory. I’m sure everyone who has ever owned a smartphone has, at some point in time, wished they had a bigger battery. Although sometimes it seems that OEMs choose fashion over battery (and it’s obvious from the figure which OEMs are habitually behind the curve), it’s pretty clear that capacity is consistently improving every year. Battery life isn’t strictly proportional to battery capacity, though. On top of that increased physical capacity, every new iteration of Android brings with it improved efficiency and new battery-saving features; individual OEMs, too, work to optimize their phones for battery savings as best they can.

There is a recurring theme in this article, though. Yes, it’s nice that battery capacity for flagships is now upwards of 3,000 mAh, on average, but how much farther can we continue to go? At some point we’ll hit the ceiling, where added capacity doesn’t justify the extra weight and size. Additionally, battery capacity is almost certainly related to screen size—as screen sizes go up, so, too, do the physical dimensions of the phone; a larger screen means more physical space to put more battery. With screen sizes hitting their sweet spot and without radical changes in battery technology, OEMs have only one way to add more capacity—add thickness. So are they doing it? Well, we have a couple figures for that.

Volume

Flagships - Volume

Maximum Volume of flagship phones over time (cubic cm)

Firstly, let’s take a look at the volume—the physical space inside of a smartphone, inside of which OEMs must fit all the components—of flagships over time. The physical space inside of a phone is certainly increasing over time, but how much of that is due to larger screens and how much is due to added thickness?

I previously mentioned that battery capacities may be piggy-backing off of the ever-increasing screen sizes on mobile devices. But with screen sizes stabilizing at between 5″ and 6″, OEMs are going to have to start adding thickness to smartphones if they wish to continue to increase battery capacity. Is there any evidence of that happening? Take a look at the next figure.

Thickness

Flagships - Thickness

Thickness of flagships over time

The most notable thing, here, is the absence of any sort of industry-wide patterns. Some flagships are getting thicker over time, while others are getting thinner. Further, there’s not really any correlation between thickness and battery capacity. Companies like Sony routinely pack large batteries in their phones, but they are at the bottom of the thickness charts; conversely, Motorola ranks number one for thickness, but their batteries are small.

So if thicknesses aren’t really increasing—and even when they do, they don’t correlate with added battery capacity—the conclusions are clear: the added physical volume within smartphones that has aided manufacturers in adding ever-larger batteries is primarily driven by the growth in screen sizes. With screen sizes pretty much fixed for the foreseeable future, short of thicker phones (unlikely) or a breakthrough in energy storage density (even more unlikely), we’d better start getting comfortable with the ~3,000 mAh range.

Mass

Flagships - Mass

Mass of Android flagships over time

I think this is an interesting figure. How many of you think about mass when phone shopping? The fact is, phones have been getting heavier over time—to the tune of nearly 30% over 4 years! When you think about it, though, it makes sense. Screen sizes have been going up, and so the physical dimensions of phones have been going up, too—that means more material and more weight. Battery capacity is also increasing, which adds a lot more weight. In addition, phones, in general, have been becoming more premium over time—in 2011, aluminum accents were an anomaly; today, they’re typical. All of these things add weight. But since screen sizes probably won’t increase much more, and OEMs haven’t been keen to add more to the thickness of phones, the steady increase in phone mass over time is probably going to be a thing of the past.

Minimum Storage

Flagships - Minimum Storage

Minimum storage over time

Minimum storage is something that should have gone up a long, long time ago. The price per GB of NAND storage has been dropping precipitously for years, but smartphone manufacturers loathe to pass those savings on to consumers. Introductory storage space has remained at 16GB for most phones for five years. We’re still getting ripped off with $50 to $100 price tags for upgrading to larger storage capacities, and microSD slots are something of an endangered species. This is the only spec in the whole industry that has refused to budge; we’re finally starting to see an inkling of a new 32 GB minimum standard, though, and it’s about damn time.

Rear Camera Resolution

Flagships - Rear Camera Resolution

Resolution of rear camera over time

Megapixels have been trending upwards, but the scatter is higher than in most other charts. There’s a good reason for that: design—both hardware and software—are more important in determining the quality of a digital photo than the absolute resolution. For instance, the Samsung Galaxy S6 and Note 4 both share identical hardware cameras, but the S6 takes better pictures; and newer Xperia phones take better photos if you abstain from unlocking them. Some OEMs have held megapixel counts stable, while others have even decreased the megapixel count from one generation to the next (i.e., HTC). Despite this, image quality has generally improved over time. How many of you remember the terrible image quality of the Galaxy Nexus camera, for instance?

Looking at the trends broadly, we’ve just about hit the ~20 MP mark; even high quality point and shoot digital cameras don’t really go much higher than that. Anything much higher will probably result in an increase of noise, rather than an increase of image quality. The take-home message here is that race for more megapixels is done. The end of resolution improvements doesn’t signify the end of innovation or image quality, though. As mentioned, lens and software design are much more important than resolution, and we aren’t even in uncharted waters, here—the race for more megapixels came to an end in the world of point & shoot digital cameras years ago, and the result was that manufacturers started competing on features, software, image quality, and smart automatic camera modes. We’ve already seen some smartphone manufacturers resort to gimmicks to differentiate their products (dual rear cameras, anyone?), but there are many ways to innovate and differentiate. One such new feature that comes to mind is optical image stabilization, which has been making its way into most flagship phones.

Conclusions

I hope the figures I have presented have been enlightening, and I’m sure that everyone reading will draw their own conclusions. In the absence of any external information, the clear, upward-trending linear growth across nearly every smartphone specification might leave some people with the idea that this growth will continue forever—or at least unabated in the near-term. I’ve come to very different conclusions, however. I think that this clear, predictable growth can’t continue forever, and indeed it will come to an end sooner than we might expect. Us Android enthusiasts have been spoiled by these years of high spec growth rates, and we’ve even grown to expect such improvements year after year. Some specs, such as phone size and rear camera megapixel count, have reached the end of their growth, while in other areas continuous improvement will become exponentially more difficult over time as OEMs reach the limits of current technical capability.

Although I think it’s likely that we’ll continue to see new, exciting, and innovative phones for a long time to come, I do think that the idea of concrete improvements year after year after year is going to face an abrupt death. In my opinion, the annualized smartphone model is over, or will soon be over. Like with Apple, I think that we’ll soon start seeing major flagships receive only minor upgrades or additions annually, while complete redesigns will take two years or more.

Below are my predictions for the future. Do you agree with them? Let us know in the comments!

  • CPUs will improve, but does it matter? Mobile CPUs are limited by heat, efficiency, and price considerations. As Moore’s Law slows down, phones will no longer see the performance, heat, and efficiency gains merely from using smaller processes. In addition, we may already be at a point where the CPU is strong enough that more speed won’t necessarily mean a snappier operating system. If that’s the case, further performance gains won’t result in noticeable real-world improvements, and so new CPUs won’t excite like they once did.
  • RAM will increase, but slowly. Smartphones are rapidly approaching parity with laptops in terms of RAM capacity. RAM is expensive, and the OEMs very slow rate of RAM capacity improvements shows that they’ll continue shipping phones with as little RAM as possible, and they won’t include more if the performance boost doesn’t justify it.
  • Screen size has stabilized between 5″ and 6″. Any larger and smartphones will have become tablets. Sales of current phone models also show that consumers prefer moderately-sized phones to behemoths like the Nexus 6. There will always be a market for phablets, but the median size of smartphones should grow no more.
  • Pixel density is nearing its logical conclusion. The pixel density on flagships is already upwards of 500 ppi, and the Galaxy S6 is approaching 600. Sharp has already developed a prototype screen with 736 ppi, which exceeds the limits of what the human eye can see. Once you reach that point, there’s not much reason to go further.
  • Display resolution will stay at QHD for years. With screen size and pixel density stagnating, resolution will stagnate, too. Even with Sharp’s super-dense prototype screens, you can only fit 3840×2160 pixels (UHD/4K) on a 6″ screen. Smartphones have been a driving force for improved resolution and pixel density in computer displays, but 4K may be the end-game—at least for anything smaller than a large tablet. And at our current pace of resolution growth, it’ll be years before mainstream phones adopt 4K; I expect we’ll mostly be working with QHD screens for the foreseeable future.. even if the jump is close.
  • Battery capacity may have reached its limit. We’re finally up around the 3,000 mAh mark for median battery capacity in flagship phones, but there it will probably stay. Ever-growing screen sizes have given OEMs more physical space to shove bigger batteries into phones, but as screen sizes stagnate, so too do phone sizes, and OEMs have shown little interest in adding extra thickness to phones. Thus, unless we see improvements within the batteries, themselves—improved energy storage density, for instance—we’d probably better get used to 3,000 mAh batteries.
  • Battery life will continue to improve. Despite battery capacities stagnating, there is plenty of room for battery life improvement. Every new version of Android sips less battery than the last, and from screens to radios, OEMs improve efficiency where they can, too. With CPU fabrication getting smaller and DDR4 running at a lower voltages, we can expect battery life to improve even as capacity growth is at a standstill.
  • The megapixel race is done, but that doesn’t mean cameras will stop improving. Rear camera resolutions and sensor sizes equal or exceed dedicated point & shoot cameras; additional megapixels will just add noise. The digital camera industry reached the megapixel finish line years ago, and they have since focused on improving software and features to differentiate from competitors. Software makes a huge difference in image quality, as can be seen by the difference in quality between the Samsung Galaxy S6 and Note 4, despite identical camera hardware. Optical image stabilization is the Next Big Thing, and we’ll likely see more gimmicks as manufacturers strive to differentiate themselves from competitors.



from xda-developers » xda-developers | Material Design Spec Updated http://ift.tt/1LFHWT1
via IFTTT

Guide to Using XDA Forums and Threads for Newcomers

xda

This guide is brought to you by Senior Member  ZipAddict and was made to help new members of XDA understand how the forums work. Through this you will learn how to personalise and navigate the site, as well as how to get involved with the XDA community.



from xda-developers » xda-developers | Guide to Using XDA Forums and Threads for Newcomers http://ift.tt/1fRckOM
via IFTTT

Edit Notification Panel Background Without Affecting Lockscreen

Screenshot_2015-08-30-04-30-09

XDA Senior Member Morningstar has put together a small guide to add a background in the notification panel, without affecting the panel behavior on lockscreen. The modification uses a pre-built smali folder which is to be placed inside a decompiled SystemUI.apk. It’s pretty simple, so follow along!



from xda-developers » xda-developers | Guide to Using XDA Forums and Threads for Newcomers http://ift.tt/1JGMHMB
via IFTTT

How to Root Your Galaxy Note 4 (N910C) Running 5.1.1

main_bg_left

This guide by  XDA Senior Member geiti94 shows you how to root your Samsung Galaxy Note 4 (N910C) on Android 5.1.1. Please note that once there is a bug when you first boot, and you will need to shut down the display and power on again. Read the thread carefully to know more before going ahead!



from xda-developers » xda-developers | Guide to Using XDA Forums and Threads for Newcomers http://ift.tt/1fRckyf
via IFTTT

dimanche 30 août 2015

Saturday Contest: Winners and the Answers!

contest

Yesterday we decided to have some fun. We posted 2 riddles for you guys to try and solve, with Google Play Credit prizes for both the winner and the first runner-up. We had hundreds of entries, but only a few of you got the answers correct. The wait is now over, here are the answers and who got them first.

1 – A Man with a Boot, Searching for a Shirt.

The first answer we were looking for was the name of one of our Senior Recognized Developers, a man famous for many XDA apps including the popular Liveboot which replaces your boot animation with a live logcat. The first clue we gave out on Reddit and Twitter was a link to one of these logcats. According to his account details, he also has no idea where his shirt is.

The first answer was “Chainfire”, of course!

2 – The Wild sound of Freedom.

The second riddle was a bit harder if you had missed the recent release of a certain open source music app by developer XpLoDWilD. The clue we gave to this, as many of you guessed, was a small grayscaled portion of the welcome screen.

The second answer was “Encore”!

Congratulations if you got them both right, only 24 of you gave both correct answers. However, the member that gave the answer first and, therefore wins $25 of Google Play credit was: Moon2. The second person to answer correctly winning themselves $10 of Google Play credit was: adaytoremember. Bravo! We will PM your codes shortly.

The following users also answered correct but were, unfortunately, too late to win one of the codes:

  • purgepure
  • TJKV
  • sebastian05000
  • Quasar
  • Tony_St
  • YoshiShaPow
  • soumitpl48
  • paarthdesai
  • medicdj
  • gus1521
  • kawiesh
  • Morningstar
  • Ash110
  • Preggy
  • Marxie
  • lukes91
  • Spere
  • thunderskain
  • vinver-3160
  • JavierAlonso
  • siddlv
  • danielbulan97

Honourable mentions

We had many brilliant answers and some were far deeper than we had considered, some of our favorite answers for the first included:
“A man with a phone searching for a ROM”
“XDA TV’s Jordan Keyes”
someone who’s probably gonna be late for work !”

and for the second:
…you gonna hear me rooaaaar……….”
Freebird – Lynyrd Skynyrd” (It’s mentioned in the Encore app description)
Guns N’ Roses’s music, Welcome to the Jungle”

 

Did you work them out? Leave a comment below!



from xda-developers » xda-developers | Saturday Contest: Winners and the Answers! http://ift.tt/1MWjLkS
via IFTTT

Unofficial CyanogenMod 12.1 for the OnePlus Two

oneplus 2

CyanogenMod 12.1 for the OnePlus Two is now sufficiently stable to be used as a daily driver. Recognized Developer Grarak has updated the ROM and now the only functionalities yet to be implemented are the Fingerprint sensor, laser autofocus, the notification slider and enforcing selinux.



from xda-developers » xda-developers | Unofficial CyanogenMod 12.1 for the OnePlus Two http://ift.tt/1X2skiH
via IFTTT

Sunday Debate: How Will Lenovo Affect Motorola’s Future?

lenovo

Join us in a fun Sunday Debate on Lenovo and Motorola. Come with your opinions and feel free to read some of our thoughts, then pick your side or play devil’s advocate to get your voice heard and engage in friendly discussion. You can read our food-for-thought or jump straight into the fray below!

  • Do you trust Lenovo?
  • Do you think Lenovo will push Motorola forward?
  • What is your opinion on the new interventions and alleged merge?
  • What do you think will happen to Moto phones?

20150830170034590Google’s acquisition Motorola marked a great beginning for the smartphone elder. One only has to look back at the Moto G and its “a Google Company” branding to begin fathoming the influence the Search Giant had on Moto, and how the shift in course also marked a clear turning point for the industry at large. Since 2013, many great devices have come and gone under Motorola’s name, and in the end, it seems that most of them have been met favorably: the budget E line, the excellent G mid-rangers, the beloved X flagships, the niche Turbo and even a premium Nexus.

Then in January of 2014, shortly after the Moto G’s success, Google sold Motorola Mobility to Lenovo, a very well-known Chinese manufacturer of PCs, for $2.91 billion. This was a shock to many, as Google has bought Motorola in 2012 for $12.5 billion, and nobody expected Lenovo of all players to acquire the company. Analysts quickly began theorizing the reasons behind the sale and the purchase, many concluding that Google needed Motorola to exploit crucial patents and that Lenovo could use the company (and most importantly, its name) to enter the U.S. smartphone market.

Distrust and Performance

In the past few years, Motorola phones have been very well received. However, many fans are still worried about the future of the company for various reasons. One of them is that Motorola is an age-old mobile manufacturer, and much of that expertise and talent might be stunted by Lenovo. Other reasons include distrust for Lenovo for various controversies in the past.

20150830165622124There are a few things to consider: the U.S.-China Economic Security Review Commission called for a probe on a Lenovo deal due to concerns about possible spying. Lenovo is also known for having pre-installed software in consumer laptops from a company called Superfish, which could hijack web connections among other adware functions. The other issue we saw this year was Lenovo-Motorola’s GPL violations as there were numerous delays on their source releases. Considering Motorola was once a Google company, the concerns the infringement received were more than justified.

On a positive note, Motorola has had some great releases in the past year and since Lenovo’s purchase. The acquisition was finished by October of last year, so we can assume that some of the developments are partially due to Google’s influence. But the 2015 Moto G, for example, managed to give us all a surprise with its updated camera, speedy performance and great bang-per-buck. The Moto X Play is getting good reviews (despite it’s lack of gyroscope) and many are excited about the Moto X Pure/Style and all the greatness it offers for just $400. The new Moto 360 has been leaked numerous times and that also has many enthusiasts excited. Will this change?

Concerns

This month we’ve seen much news that have plenty of Motorola fans worried. First of all, Motorola was reportedly cutting 20% of their jobs and getting a new identity under Lenovo. The company was apparently not making enough money as Lenovo hoped, and now Lenovo wants to get a tighter hold of it. Now that Motorola is so big in emerging markets, Lenovo is injecting its people into the company and going forward with manufacturing in India. The latest reports, however, say that a bigger merge is taking place. While it originally seemed that Motorola kept functioning without much influence from Lenovo, the dynamic has changed and it is expected that Lenovo will intervene in many Motorola developments directly and indirectly. Finally, it’s also worth noting that Lenovo has their ZUK branch, which established relationships with Cyanogen and will have devices sporting Cyanogen OS.

Debating

On one hand, Motorola’s performance so far has been notable, and plenty of Android enthusiasts believe they are at a high-point. Lenovo’s resources might have been a deciding factor in many products consumers love, and injecting new blood into a company is not necessarily bad — in fact, it’s often beneficial. However, Lenovo has been under the microscope for various reasons in and out of mobile, and disrupting the structure of such an experienced mobile manufacturer may result in dissatisfying products for the sake of profit.

  • Do you trust Lenovo?
  • Do you think Lenovo will push Motorola forward?
  • What is your opinion on the new interventions and alleged merge?
  • What do you think will happen to Moto phones?



from xda-developers » xda-developers | Sunday Debate: How Will Lenovo Affect Motorola’s Future? http://ift.tt/1Jqodnt
via IFTTT

Snapprefs Xposed Module Updated with Latest Snapchat Support

FsFw0Dp

Snapprefs Xposed Module has been updated with a stable release after quite some time. The newest non-beta update brings along complete support for Snapchat version 9.14.2.0, along with ability to hide Discover from UI, save images as PNGs and Overlays and other bug fixes and improvements.



from xda-developers » xda-developers | Snapprefs Xposed Module Updated with Latest Snapchat Support http://ift.tt/1MVVJGJ
via IFTTT

Arter97 Kernel for Note 5 Promises Better Memory Management

arter97

XDA Recognized Developer arter97‘s kernel for the Samsung Galaxy Note 5 promises better memory management than the preloaded stock Samsung kernel. The kernel also has full support for f2fs using PhilZ recovery only, so back up and flash away!



from xda-developers » xda-developers | Snapprefs Xposed Module Updated with Latest Snapchat Support http://ift.tt/1LDL8P2
via IFTTT

Realistic Images of Blackberry “Venice” Slider Appear

dIB9EZW

The Blackberry Venice has made its appearance in all its unofficial glory. The images show the device from a lot of angles, and shows what appears to be a rather clean AOSP build. The website also claims that the Venice will come with a 18MP fast focus camera, making it a very interesting device so far!



from xda-developers » xda-developers | Snapprefs Xposed Module Updated with Latest Snapchat Support http://ift.tt/1LDL8OW
via IFTTT

Xposed Module To Fix MobileRadioActive Bug

mobileradioactive

Lollipop is remembered as the Android version that introduced us to the world of Material Design, bringing on a rather significant change in how Android attempted presentation of UI. What Lollipop is also famous for is the numerous bugs it introduced to an OS that was very close to maturity, and ended up souring what was to be a pleasant UX change.

An Ugly Bug!

MobileRadioActive is amongst one of those bugs from Lollipop that has been affecting a lot of users, and is said to have been fixed in Android Marshmallow. In simple terms, the Android system would keep the mobile radio awake even after mobile data usage had been disabled, thereby causing the device to remain awake. XDA Senior Member Bazoocaze investigated the issue and gave us a lowdown on what was causing this bug:

After some investigation on the issue I found that the BatteryStats service was not receiving the radio power down notification. The investigation lead me to the NetworkManagementService.java, where I found that some code was discarding the radio power change notifications after the first radio power on.

The problem is that in NetworkManagementServer.java the notifyInterfaceClassActivity method is discarding the notifications of radio power change to the BatteryStats (via noteMobileRadioPowerState) if the fromRadio parameter is false after it’s being true some time before.

Even after a detailed analysis, it was unclear what is the real role of the fromRadio parameter. Changing it to true in the calling methods solved the issue in the testing unit (Sony Xperia ZL).

Reproducing this bug is rather simple. All the users have to do is enable mobile data, use it for a short while, and then disable it. After a some time, check for the “Mobile Data Active” time under the apps that were used, which should appear as significantly higher than your usage had been. As a confirmation, the “Cell Standby” option would also show high drain, sometimes even higher than your display’s power usage.

A Nice Fix!

h646hEUReddit user Chronophasia gives us a sample reproduction sample reproduction of this bug, wherein the browser was used for a few minutes only (left image).

Thankfully, XDA Senior Member Bazoocaze has found a fix for the issue. The fix originally comes as a modified CM12.1 build for the Sony Xperia ZL, but thanks to the patches submitted by the dev, it has also been adapted into a universal Xposed module by XDA Senior Member pyler. The fix module is still undergoing tests for further confirmation which is why it is not currently available in the Xposed repo. However, you can still grab the latest version from the forum thread. As an added bonus, a patch has also been submitted to the CyanogenMod for review and should make its way on to nightlies soon.

 

If you are amongst those suffering from this battery draining bug, give the Xposed module a spin and report back your results in the module thread!



from xda-developers » xda-developers | Xposed Module To Fix MobileRadioActive Bug http://ift.tt/1Kmm1De
via IFTTT

samedi 29 août 2015

Saturday Contest: Solve These XDA Riddles and Win Play Store Credit!

contest

This week we are bringing you a fun little contest through which you can win Play Store credit to spend on your favorite or most wanted applications. We’ll be giving out two Play Store credit codes, a $25 one for the winner and a $10 code for whoever ends up in second place. The contest is easy, all you have to do is head into this Google Form and answer our two XDA riddles.

The riddles and answers are related to XDA culture, personalities and applications. Think outside the box and look for clues in our forums, notable member profiles, or simply take a walk down memory lane.

The two riddles are simple, but abstract. You must get both right in the linked form in order to win. The first person to get both right will win the $25 code, and the second one will get the $10 code. Only the first submission under your username will count, so think your answers through!

The riddles are the following:

1 – A Man with a Boot, Searching for a Shirt.

2 – The Wild sound of Freedom.

Submit your answers!

We’ll be giving out clues on our twitter @xdadevelopers, so stay tuned or ask us for tips over there. Otherwise, feel free to discuss the questions in the comments down below.

We’ll be closing down the form tomorrow Sunday at 10 AM ET, so you have time until then to leave your answers. Good luck!

 



from xda-developers » xda-developers | Saturday Contest: Solve These XDA Riddles and Win Play Store Credit! http://ift.tt/1F7gUza
via IFTTT

[Deal Alert] 1st-Gen Moto 360 (Metal) for $149.99 on Woot!

moto360metal

Woot.com is offering new Moto 360’s with metal bands for $149.99 + $5 shipping while supplies last. The 2nd-gen Moto 360 is on the horizon (in small and large varieties), but now is a good chance to get the old one at a steep discount.



from xda-developers » xda-developers | [Deal Alert] 1st-Gen Moto 360 (Metal) for $149.99 on Woot! http://ift.tt/1O07eeV
via IFTTT

QuickPic Now Owned By Maker of Clean Master

QuickPic Gallery

QuickPic, the highly regarded media gallery for Android, is now a part of Cheeta Mobile alongside the questionably beneficial Clean Master task killer. A new update is in the works, so stay tuned as we watch this ownership change with keen eyes. Official announcement after the jump.



from xda-developers » xda-developers | QuickPic Now Owned By Maker of Clean Master http://ift.tt/1N259C9
via IFTTT

Surround Sound Mod for the T-Mo Note 5

20050406054640!Sound-icon

If you have a T-Mobile Note 5 but find that using the rear speaker is less than ideal, you’re in luck. XDA Forum Member sshafranko has created a flashable zip to activate both the front earpiece speaker and the rear main speaker, resulting in better audio quality when the phone’s screen is facing you.



from xda-developers » xda-developers | QuickPic Now Owned By Maker of Clean Master http://ift.tt/1N259C2
via IFTTT